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Motivation
Great Barrier Reef (GBR)

 The Great Barrier Reef (GBR) is the world's largest coral

reef system spreading over 348,000 Km2.

 It has a great historical and cultural value.

 It attracts around 5.2 billion dollars each year to the

Australian economy through tourism.
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Motivation
Why Monitoring is Required? 

 Coral reef are under many environmental threats.

 The world’s first major coral bleaching occurred in 1998.

 It was an eye opener for scientists to establish monitoring

programmes.

Monitoring programs play a key role in identifying

patterns, trends and threats to coral

reef systems.
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Motivation
GBR Monitoring

 Australian Institute of Marine Science (AIMS) has been

surveying for the health of GBR over 20 years.

 Their Long-term Monitoring Program (LTMP) represents the

longest and continuous record of change in reef communities.

 In LTMP, samples are collected every two years from the

selected reefs (sites).

Questions:

Why every two years? Why not every year or every 3

years?

Are they collecting data from optimal set of reefs/sites?5



Background
Optimal design

Experimental Design involves

finding optimal sampling locations

in space or/and time (a design).

An optimal design maximises the

amount of "information" that can

be obtained for a given amount of

data collection effort.

We focus on finding optimal

sampling locations in space for a

future time period.
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Background
Types of designs

There are two basic types of designs:

 Static design – Design which remains fixed over time.

 Adaptive design – Design which changes over time.
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Background
Adaptive design approach
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Background
Current LTMP design

 In LTMP, data are gathered from predetermined reefs and

time points that do not change over time.

 Potentially, more effective monitoring could be achieved if

sampling designs were developed

 through analyzing previously collected data and,

 incorporating disturbance information such as cyclone

impacts, occurrence of bleaching events, and crown-of-

thorns starfish outbreaks.
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Objectives

We evaluate adaptive design through considering:

1. The effect of visiting less LTMP sites within different

regions of the GBR.

2. Comparing the ability to accurately estimate parameters

of the fixed LTMP design to designs that change over

time depending on the reef condition and disturbances.
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Proposed Bayesian design framework
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Prior information
Why Whitsunday region?

Relatively large amount 

of  data is available for 

this region.

Diverse range of  

anthropogenic impacts 

that have occurred in this 

region over time. 



Prior information
Potential covariates 

Covariate Description Resolution Type

Shelf  position inshore, middle, outer 0.005°

Site-specific
No-take Not allowed fishing 0.005°

Bathymetry Depth below sea level 0.0003°

Chlorophyll Mean concentration of  chlorophyll A pigments 0.01°

CRS_T_AV Mean temperature 0.01°

Cyclone 0 = No cyclone effects,

1 = Some cyclone effects

0.01°

Time-varyingBleaching 0 = No coral bleaching, 

1  1% coral bleached

0.01°

CoTS Mean A. solaris densities per manta tow 0.01°

Time Sampling year 2002-2015



𝑮(∙) −logit linking function

𝒍𝑖𝑗𝑘 −site-specific covariates

𝜷𝑙 −regression coefficients for the site specific-covariates

𝒛𝑖𝑗𝑘 −time-varying covariates

𝜷𝑧 −regression coefficients of time-varying covariates

𝛽𝑡 −regression coefficient of Time

We assume geostatistical mixed Beta regression model;
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Prior information
A statistical model for coral cover

 𝜂𝑖𝑗𝑘 ≔ 𝑮 𝜇𝑖𝑗𝑘  = 𝑮 𝐸 𝑦𝑖𝑗𝑘 |𝜽  = 𝒍𝑖𝑗𝑘
𝑇 𝜷𝑙 + 𝒛𝑖𝑗𝑘

𝑇 𝜷𝑧 + 𝛽𝑡Time
𝑘

+ 𝑟𝑖𝑗𝑘 ,  

 
𝑦𝑖𝑗𝑘 ~Beta(𝜇𝑖𝑗𝑘 , 𝜓𝑖𝑗𝑘 ) 



Prior information
Why spatial variability needs to be considered?
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Understanding how coral cover

varies through space is essential

for deriving sampling strategies.

Informs how close sites need to be

to capture the heterogeneity.

Improves parameter estimates and

model predictions in areas where

you didn't sample when data are

spatially dependent.
Source: Mellin c, et al. (in review). 



We chose to use the Gaussian covariance model parameterized

as

where ℎ𝑠𝑖1𝑠𝑖2 is the distance between sites 𝑠𝑖1 and 𝑠𝑖2 , 𝜎𝑟
2 is 

the variance of  the spatial process (partial sill) and 𝜙 is the 

range parameter. 
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Prior information
Covariance model

𝚺𝒓 =𝜎𝑟
2exp  − 

𝑎ℎ𝑠𝑖1𝑠𝑖2

𝜙
  2 , 𝑖1, 𝑖2 = 1,… , 𝑛 



Prior information
Bayesian framework

We use a Bayesian modelling framework as we can use expert

elicited and previously collected data to inform priors on the

model and model parameters.

We chose a weakly informative multivariate normal prior

distribution for the parameter and update using the data.
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Prior information
Prior for the design
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Mean Standard 

deviation

Lower bound of  95% 

credible interval

Upper bound of  95% 

credible interval

Intercept -1.27 0.08 -1.43 -1.12

Time -0.04 0.03 -0.10 0.01

Middle-shelf 0.15 0.08 -0.01 0.32

Outer-shelf 0.91 0.21 0.50 1.31

log CoTS -0.01 0.01 -0.02 0.00

No-take 0.28 0.09 0.11 0.45

Cyclone -0.45 0.05 -0.55 -0.35

Bleaching -0.22 0.07 -0.35 -0.08

Bathymetry -0.11 0.02 -0.15 -0.06

Chlorophyll -0.80 0.10 -0.99 -0.61

CRS_T_AV -0.23 0.05 -0.33 -0.13

Log variance -2.52 0.04 -2.61 -2.44

Log partial sill -5.98 0.48 -6.93 -5.03

Log range -1.12 0.06 -1.24 -1.00



Proposed Bayesian design framework
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Design for ecological monitoring
How can designs be evaluated? 

We collect data based on designs.

 To evaluate designs, we need to quantify how much

information is in data.

 A utility function 𝑢 𝒅, 𝒚, 𝜽 quantifies the worth of

observing data 𝒚 from design 𝒅 in terms of achieving the

specified monitoring objective/s.

 The expected utility function can be defined as follows:
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𝑢(𝒅) =   𝑢(𝒅, 𝒚, 𝜽)𝑝(𝒚 𝜽, 𝒅)𝑝(𝜽)𝑑𝜽 𝑑𝒚

𝜽𝒚

. 



Design for ecological monitoring
Ecological monitoring

 There are additional uncertainties associated with where and

when the time-varying disturbances will occur.

 To account for these additional uncertainties, the above

expected utility can be extended as follows:

where the expectation is now taken over the distribution of

the time-varying covariates (as well as 𝜽 and 𝒚).
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𝑢(𝒅) =    𝑢(𝒅, 𝒛, 𝒚, 𝜽)𝑝(𝒚 𝜽, 𝒅, 𝒛)𝑝(𝜽)𝑝(𝒛|𝒅, 𝜿)𝑑𝒛 𝑑𝜽 𝑑𝒚
𝒛𝜽𝒚

, 



Design for ecological monitoring
Which utility to choose?

 The precise estimation of model parameters that describe

the impact of disturbances.

 So, we need a parameter estimation utility (e.g. Kullback-

Leibler divergence (KLD)).

 KLD measures the distance between the prior and

posterior distributions:

where log 𝑝 𝒚 𝒅, 𝒛 = 𝜽׬ log 𝑝 𝒚 𝜽, 𝒅, 𝒛 𝑑𝜽 is the marginal

likelihood.
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𝑢(𝒅, 𝒚, 𝒛) =  𝑝(𝜽|𝒚, 𝒅, 𝒛)log 𝑝(𝒚|𝜽, 𝒅, 𝒛)𝑑𝜽 − log 𝑝(𝒚|𝒅, 𝒛)
𝜽

 



Design for ecological monitoring
Approximating the expected utility

Unfortunately, in general, the above expectation does not have a 

closed form solution, and therefore needs to be approximated. 

One common approach is via Monte Carlo integration as follows:

where 𝑇 is the controlling parameter of  Monte Carlo 

approximation, 𝜽 𝑡 ~𝑝 𝜽 , 𝒛 𝑡 ~𝑝 𝒛 𝒅, 𝜿 , 𝒚 𝑡 ~ 𝑝 𝒚 𝜽(𝑡), 𝒅, 𝒛 𝑡 .
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𝑢 (𝒅) =
1

𝑇
 𝑢 𝒅,  𝒛(𝑡),  𝜽(𝑡), 𝒚(𝑡) ,

𝑇

𝑡=1

 



Design for ecological monitoring
Simulate time-varying covariates
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Site 
number

Bleaching 
proportion

Cyclone 
proportion

CoTS
proportion

Log CoTS
mean

Log CoTS
standard 
deviation

1 0.12 0.25 0.62 -4.44 2.80
2 0.12 0.25 0.62 -4.60 2.99
3 0.12 0.25 0.62 -4.83 3.27
4 0.12 0.12 0.62 -3.84 2.88
5 0.12 0.12 0.62 -3.82 2.86
6 0.12 0.12 0.62 -3.80 2.85
7 0.12 0.12 0.62 -4.31 2.85
8 0.12 0.12 0.62 -4.29 2.81
9 0.12 0.12 0.62 -4.30 2.83

10 0.12 0.37 0.75 -5.45 3.90
11 0.13 0.38 0.77 -5.28 3.73
12 0.12 0.37 0.75 -5.28 3.73
13 0.12 0.37 0.75 -9.70 1.41
14 0.12 0.37 0.75 -9.62 1.40
15 0.12 0.37 0.75 -9.39 1.40
16 0.12 0.50 0.75 -6.90 2.43
17 0.13 0.49 0.77 -6.65 2.27
18 0.12 0.50 0.75 -6.43 2.12
19 0.12 0.25 0.75 -8.45 1.47
20 0.12 0.25 0.75 -8.14 1.47
21 0.12 0.25 0.75 -7.96 1.47
22 0.12 0.37 0.75 -7.17 2.18
23 0.12 0.37 0.75 -6.86 2.05
24 0.12 0.37 0.75 -6.62 1.96
25 0.12 0.37 0.75 -8.26 2.28
26 0.12 0.37 0.75 -8.26 2.28
27 0.13 0.36 0.77 -8.26 2.28



Design for ecological monitoring
Simulate coral cover data

Once the time-varying covariates were generated, the

following model was used to simulate the coral cover

proportion data:
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logit 𝜇𝑖𝑗𝑘  = 𝛽0 + 𝛽1Middle-shelf𝑖𝑗𝑘 + 𝛽2Outer-shelf𝑖𝑗𝑘 + 𝛽3No-take𝑖𝑗𝑘  

   +𝛽4Cyclone
𝑖𝑗𝑘

+ 𝛽5Bleaching
𝑖𝑗𝑘

+ 𝛽6log CoTS
𝑖𝑗𝑘

+ 𝛽7Bathymetry
𝑖𝑗𝑘

+

𝛽8Chlorophyll
𝑖𝑗𝑘

+𝛽9CRS_T_AV
𝑖𝑗𝑘

+𝛽10Time𝑖𝑗𝑘 + 𝑟𝑖𝑗𝑘 . 



Design for ecological monitoring
Optimising the design

In our reef monitoring scenarios, an optimal design will define

which sites should be visited in the next year.

As such, the design will be discrete with a finite number of

potential solutions.

In such situations, the coordinate-exchange algorithm can be

used to maximise the expected utility function.
26

𝑢 (𝒅) =
1

𝑇
 𝑢 𝒅,  𝒛(𝑡),  𝜽(𝑡), 𝒚(𝑡) ,

𝑇

𝑡=1

 )𝒅∗ = argmax 𝒅∈𝑫  𝑢(𝒅



Proposed Bayesian design framework
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We compared designs based on Kang 

et al. (2016) model and our spatial 

model.

Corresponding efficiency is 

approximately 47%.

Information gained from designs 

based on spatial model is almost twice 

the amount compared to designs 

based on Kang et al. (2016) model.

Evaluating the framework
Comparison between Kang et al. (2016) and spatial model
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We follow two approaches;

 Drop reefs one by one;

 Drop one site from each reef.

Evaluating the framework
Objective 1: Effect of having less LTMP sites 
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Effect of having less LTMP sites
Dropping reefs

30

The design without Hayman Island reef  (left) and the design without both Hayman Island reef  

and Rebe reef  (middle) still retain around  89% and 81% efficiency, respectively. 

Even after dropping three reefs, there are designs with  more than 75% efficiency (right).

Figure 1: Efficiencies of  designs after dropping one (left), two (middle), and three (right) reef/reefs in the Whitsunday 

region. The black horizontal line represents 75% efficiency level. 
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Effect of having less LTMP sites
Dropping reefs (Cont.)
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Figure 2: Spatial locations of  sites on the reefs in the Whitsunday region. Sites on the two least informative reefs 

are displayed using red colour. 



Effect of having less LTMP sites
Dropping sites

32Figure 3: Spatial locations of  retained/dropped sites on each reef.

Resulting the best design has approximately 85% efficiency.



We will examine the ways in which an optimal design can be

found based on the reef condition.

To evaluate this sampling framework, a range of disturbance

patterns were simulated and designs were found based on

these patterns.

Scenario 1: A pattern consistent with historical disturbance

data.

Scenario 2: CoTS disturbances are simulated on selected

sites.

Evaluating the framework
Objective 2: Designs depending on the disturbances
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Evaluating the framework
Why certain reefs/sites were selected?

34

Given the optimal designs we have found, it is important to 

consider why certain reefs/sites were selected over others.

There can be one or more contributing factors towards it:

- Distance between reefs/sites (spatial effect in the model);

- Differences in covariate values between reefs/sites;

- Prior uncertainty about estimated coefficients.

Here, we will try to present some potential reasons for 

selecting certain reefs/sites based on these factors.



Designs depending on the disturbances
Scenario 1
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Figure 4: The optimal design sites and the number of  visits to each site.

The design we found does not visit all the LTMP sites in the region, but it collects 

more data from some selected sites. 

Reef names Shore Site 
numbers

Broder Island reef I 1,2,3

Langford-bird reef I 4,5,6

Hayman Island reef I 7,8,9

20104S M 10,11,12

19138S M 13,14,15

Rebe reef O 16,17,18

19131S M 19,20,21

Hyde reef O 22,23,24

Slate reef O 25,26,27



Designs depending on the disturbances
Scenario 1 (Cont.)
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Figure 6: Spatial locations of  the optimal design’s (Scenario 1) sites in the Whitsunday region on the GBR.



Significance
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 Demonstrate the use of time-varying covariates information

in deciding sampling locations for the coming year.

 Demonstrate the ability to identify less informative

reefs/sites:

o Two reefs can be disregarded without a substantial loss

in information about coral cover.

o One site can be neglected from each reef, while still

retaining 85% of the information.

 Could provide highly informative data compared to the

current LTMP design in order to achieving specified

monitoring objectives.
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Thank You!
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