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Introduction

Aim

Efficiently derive high dimensional Bayesian designs

Large scale model and parameter uncertainty

Methodology

Extend the use of emulators in Bayesian design

Propose the new k -dimensional approximate coordinate
exchange algorithm

Motivation

Current methods can be inefficient

Extensions are needed in general but particularly for high
dimensional designs such as screening experiments
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Bayesian inference

Predominately focused the posterior distribution:

p(θm |y,d,m) = p(θm |m)p(y |θm,d,m)/Zm

where y represent the data, d the design, θm the model
parameters, p(θm |m) and p(y |θm,d,m) are the prior and the
likelihood for model m and model m has prior model
probability p(m), for m = 1, . . . ,K .

Zm is the model evidence, defined as

Zm = p(y |d,m) =

∫

θm

p(y |θm,d,m)p(θm |m)dθm

Zm used for model choice (proportional to posterior model
probabilities)
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Bayesian design

Find a design d to address particular experimental aims

Aim is encapsulated in a utility function u(d, y,m)

Could include parameter estimation, model selection and/or
prediction

Maximise expected utility d∗ = arg maxdu(d), where

u(d) =
K

∑

m=1

p(m)

∫

y
u(d, y,m)p(y |d,m)dy.

u(d, y,m) is some measure of information gained from d
given model m and observed data y.
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Estimation utilities

Shannon information gain on θ (Shannon, 1948)

u(d, y,m) =

∫

θm

p(θm |m, y,d) log p(y |θm,m,d)dθm−log p(y |m,d)

Negative squared loss (Overstall and Woods, 2017)

u(d, θm, y,m) = −(θm − E[θm])
′(θm − E[θm])

where E[θm] =
∑K

m=1 p(m)
∫

θm
θmp(θm |y,d,m)dθm

Need p(θm |m, y,d) to get u(d, y,m)

Difficult to approximate log p(y |m,d)
Computationally difficult to efficiently approximate
p(θm |m, y,d) (more details later)
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Model discrimination utilities

Mutual information (Box and Hill, 1967, Drovandi, McGree,
Pettitt, 2014)

u(d, y,m) = log p(m|y,d)

01 utility (Overstall, McGree, Drovandi, 2018)

u(d, y,m) = I(m = arg maxwp(w |yd)),w = 1, . . . ,K

Need p(m|y,d) to get u(d, y,m)

Computationally difficult
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Approximating expected utility

u(d) typically cannot be solved analytically

Can be approximated using Monte Carlo integration

u(d) ≈
K

∑

m=1

p(m)
1
B

B
∑

b=1

u(d, ymb ,m),

where ymb ∼ p(y |θmb ,m,d) and θmb ∼ p(θm |m).

BK evaluation of u(d, ymb ,m) needed

Hence, BK posterior distributions need to be approximated or
sampled from to approximated u(d).

Computationally challenging task. How can this be achieved
efficiently?
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Approximating utility

Long et al. (2013) and Overstall, McGree and Drovandi (2018)
used the Laplace approximation for efficiently estimating
u(d,m, y);

The main result is that the approximation to the posterior
distribution of θm has the following multivariate Normal form:

p̂(θm |y,d,m) = (2π)−
qm
2 |Σmy |−

1
2 exp

(

−1
2
(θm − θ̂my)

t
Σ
−1
my(θm − θ̂my)

)

,

where qm denotes the number of parameters in model m, θ̂my

and Σmy denote the posterior mode and posterior
variance-covariance matrix, respectively, for model m upon
the observation of y from design d, for m = 1, 2, . . . ,K .
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Approximating utility

For posterior inference on m, the posterior model probability
(p(m|y,d)) can be considered;

Proportional to the model evidence;

Based on Laplace approximation, the model evidence can be
approximated as follows:

p̂(y |m,d) = (2π)
qm
2 |Σmy |

1
2 p(y |θ̂my ,d)p(θ̂my |m). (1)

Thus, posterior summaries such as u(d,m, y) can be
evaluated based on the above Laplace approximation
facilitating a relatively efficient approximation to u(d);

However, non-smooth utility function leading to a difficult
optimisation problem;

Try using statistical emulators?
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The use of emulators in locating Bayesian designs

Muller and Parmigiani (1995) - Curve fitting methods to
smooth Monte Carlo draws (2D)

Weaver et al. (2016) - Gaussian process with EQI (3D)

Jones et al. (2016) - Bayes linear analysis (9D)
Approximate coordinate exchange (Overstall and Woods,
2017) (≈ 200D);

Extension of the coordinate exchange algorithm;
Emulator used to interpolate û(d) in one dimension at a time;
Can be inefficient if one-dimensional solution changes
depending on the values of other design elements.
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The ACE algorithm

Optimises each design element one-at-a-time

Instead of exchanging a discrete set of points for each design
element, fit an emulator and optimise

With k explanatory variables, n design points,
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Emulate u(d) as a function of d ip given d−ij is fixed. Denote
as u(d ij |d−ij), for i = 1, . . . , n and j = 1, . . . , k

Optimise emulator (brute force)

Cycle through all nk design points R times
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Emulation

Chosen emulator is the Gaussian Process (GP, Rasmussen
and Williams, 2006)
Defined by a mean and covariance function:

f(z) ∼ GP(m(z), k(z,γ)),

where z are predictor variables, mean function m(z) is the
expected value at z and k(z,γ) is the covariance function
which models the dependence between function values at zk

and zl , for k , l = 1, 2, . . . ,T .
Each element of the covariance matrix:

k(zk , zl;γ) =

{

γ0 + γ1 if x = 0
γ1k(zk , zl , γ2) if x > 0,

where x is the Euclidean distance between zk and zl , γ0 is
nugget, γ1 is partial sill and γ2 is an additional parameter.
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The ACE algorithm

Some popular choices for k(zk , zl , γ2) include:

k(zk , zl , γ2) = exp(−0.5(x/γ2)
2) Gaussian

k(zk , zl , γ2) = exp(−x/γ2) Exponential
k(zk , zl , γ2) = (1 +

√
5xγ2 + (5/3)(x/γ2)

2) exp(−
√

5xγ2) Matérn.

Efficient when f(z) is expensive as can interpolate f(z̃)
(based on the fitted zero mean GP):

f(z̃) = k(z̃,Z ,γ)(k(Z ,γ) + γ0I)−1z,

where Z denotes training set, k(z̃,Z ,γ) evaluates the
covariances between z̃ and Z , and I denotes the identity
matrix.
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The ACE algorithm
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Figure: Emulated utility surface and training points
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The k -dimensional ACE algorithm

Recall

d =
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Propose optimising d i simultaneously

Extend the GP to be k -dimensional

Emulate u(d) as a function of d i given d−i is fixed. Denote as
u(d i |d−i)

u(d i |d−i) ∼ GP(0, k(D ,γ)), D set of training points

Optimise k -dimensional GP

Cycle through all n design points R times
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The k -dimensional ACE algorithm

Training the emulator

For each d i , need a training set D to fit GP (for û(d i |d−i))
Consider d i

Propose D through random draws from q(·);
For each proposal, evaluate û(d i |d−i). Denote as u
Fit GP for û(d i |d−i) (via maximum likelihood);

After training, need to optimise the k -dimensional emulator
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The k -dimensional ACE algorithm

Optimising the emulator

GP is a smooth function, use gradient-based methods;

Efficient (as above):

ũ = k(d̃,D ,γ)(k(D ,γ) + γ0I)−1u. (2)

Once training is complete, loop through the following
Optimise the GP based on many random starts
Evaluate the ‘actual’ expected utility û(d i |d−i) of maximum
Re-fit the GP

The ‘best’ design form the above loop is either accepted or
rejected

Then move to next row of the design
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The k -dimensional ACE algorithm

Training and optimisation

Two components of the proposed algorithm; training and
optimisation

Need to consider trade-off in computational resources

How many utility evaluations for training? How many for
optimisation?

Explored through examples (results omitted, 75% training,
25% optimising).

Choice of covariance function

k -dimensional emulator, (in general) k > 1

Choice of covariance function is potentially important

Does this have implications for locating Bayesian designs?

Explored through examples (some results shown)
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Examples

Details of examples

Two examples to be considered; test problem and motivating
example

Will compare the performance of ACE and k -dimensional ACE

In both examples, both algorithms will be run in a similar way
(equal number of utility evaluations)
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Test problem

Logistic regression

GLMs which are of general interest to the design community
(Woods et al., 2006, Dror and Steinberg, 2008)

Often used to benchmark new computational algorithms in
Bayesian inference (Minka, 2001, Cabras et al., 2015)

Emerging in Bayesian design (Overstall and Woods, 2017,
McGree, 2017)

We consider independent and dependent data settings
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Test problem

Logistic regression
Four factor logistic regression model
Two scenarios; all data are independent and data are
collected in blocks of nG = 10, such that n = nGG, G is total
number of blocks
Model defined as

(

πig

1 − πig

)

= θ0 + β0g +
k=4
∑

j=1

(θj + βjg)dijg

where θ are regression parameters, β are block specific
parameters, dij ∈ [−1, 1], g = 1, . . . ,G
Assumed unknown sign of effect (θ = 0) with variances of 2,
βjg ∼ N(0, σ2

jg), σ
2
jg ∼ G(2, 2)

For blocked data setting, likelihood approximated (details
omitted)
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Example 1
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Figure: Utility surface and proposed optimal design points (only in 2D)
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Example 1
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Figure: ACE with exp (△), k -ACE with Matérn (◦), exp (×) and quantile
improvement (+) for Shannon information gain on θ for standard (a) and
hierarchical (b) logistic regression
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Motivating example

Screening experiments

Eight factor logistic regression model

Unknown if any or all factors are important, 256 competing
models

Model defined as
(

πi

1 − πi

)

= θ0 +
k=8
∑

j=1

δjθjdij

where δj is a binary indicator for whether factor j is active or
not, and dij ∈ [−1, 1]

p(m) correct for Bayesian multiplicity (Scott and Berger, 2010)

Assume uniform priors for θ, lower and upper bounds
(−3, 4, 5,−6,−2.5,−2,−4,−5,−6) and
(3, 10, 11, 0, 3.5, 4, 2, 1, 0), respectively.
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Example 2
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Figure: ACE (△) vs k -ACE (◦) for (a) Shannon information gain on θ (b)
Negative squared loss and (c) 01-utility
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Discussion

Proposed an extension to the ACE algorithm

k -dimensional ACE worked better or at least as well as ACE
in all examples considered

Bayesian designs differed based on choice of covariance
function - propose using CV to choose

Also tried quantile improvement for all examples.
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Future research

Potential to consider non-parametric emulators.

Should avoid some concerns about goodness-of-fit of the
emulator

Could think about more efficient or adaptive proposal
distribution for training the emulator

This is a design problem within itself

Potential benefits in considering space filling approaches
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