Extending the use of statistical emulators in
Bayesian experimental design

James McGree
Associate Professor of Statistics
Queensland University of Technology
james.mcgree@qut.edu.au, jamesmcgree.com, @j_mcgree

Joint work with
Antony Overstall
Associate Professor of Statistics
University of Southampton, UK.

QUT

April 18, 2018



Introduction

Introduction

Aim
m Efficiently derive high dimensional Bayesian designs
m Large scale model and parameter uncertainty
Methodology

m Extend the use of emulators in Bayesian design
m Propose the new k-dimensional approximate coordinate
exchange algorithm
Motivation

m Current methods can be inefficient

m Extensions are needed in general but particularly for high
dimensional designs such as screening experiments QUT'
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Bayesian inference

Bayesian inference

m Predominately focused the posterior distribution:

p(0m|y, d, m) = p(HmIm)P(YIOm, d, m)/Zm

where y represent the data, d the design, 6, the model
parameters, p(6,|lm) and p(y|6m, d, m) are the prior and the
likelihood for model m and model m has prior model
probability p(m), form=1,...,K.

m Z, is the model evidence, defined as

Zm = p(yld,m) = fo p(Y10m, d, m)p(Om|m)don

m

m Z,, used for model choice (proportional to posterior model
probabilities) =
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Bayesian design

Bayesian design

m Find a design d to address particular experimental aims
m Aim is encapsulated in a utility function u(d, y, m)

m Could include parameter estimation, model selection and/or
prediction

m Maximise expected utility d* = arg maxyu(d), where

K

u(d) = ) plm) [ .. mip(y1d. myy.

m=1

m u(d,y, m) is some measure of information gained from d
given model m and observed data y.

QUT
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Bayesian design

Estimation utilities

m Shannon information gain on 8 (Shannon, 1948)

u(d,y,m) = fa p(8mim. y, d) log p(y|0m, m, d)dém—log p(yIm, d)
m Negative squared loss (Overstall and Woods, 2017)
u(d,Om.y,m) = —(0m — E[0n]) (0m — E[0m])

where E[0,] = >K_, p(m fg 0mp(Opmly. d, m)dép,
u Need p(0m|m7 y5 ) tO get U(d, y’ )
m Difficult to approximate log p(y|m, d)

m Computationally difficult to efficiently approximate
p(6mim,y, d) (more details later) Qur
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Bayesian design

Model discrimination utilities

m Mutual information (Box and Hill, 1967, Drovandi, McGree,
Pettitt, 2014)

u(d,y, m) = log p(mly,d)
m 01 utility (Overstall, McGree, Drovandi, 2018)

u(d,y,m) = I(m = arg max,,p(wlyd)),w =1,...,K

m Need p(mly, d) to get u(d, y, m)
m Computationally difficult

QUT
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Bayesian design

Approximating expected utility

m u(d) typically cannot be solved analytically
m Can be approximated using Monte Carlo integration

K B

1
u(d) ~ > p(m)g > u(d.Ymp. m).
m=1 b=1
where ¥y ~ P(Y10mb, M, d) and Gms ~ p(Bmlm).
m BK evaluation of u(d, y . m) needed

m Hence, BK posterior distributions need to be approximated or
sampled from to approximated u(d).

m Computationally challenging task. How can this be achieved
efficiently?

QUT
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Bayesian design

Approximating utility

m Long et al. (2013) and Overstall, McGree and Drovandi (2018)
used the Laplace approximation for efficiently estimating
u(d, m,y);

m The main result is that the approximation to the posterior
distribution of 8, has the following multivariate Normal form:

~ _dm _1 l ~ _ N
p(Omly.d, m) = (2n) : 12 myl : exp (—E(am - emy)tzm}/(am - amy))

where g, denotes the number of parameters in model m, émy

and X, denote the posterior mode and posterior
variance-covariance matrix, respectively, for model m upon

the observation of y from design d, form=1,2,...,K. Qur
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Bayesian design

Approximating utility

m For posterior inference on m, the posterior model probability
(p(mly, d)) can be considered;

m Proportional to the model evidence;

m Based on Laplace approximation, the model evidence can be
approximated as follows:

p(ylm,d) = (2”)q7m|zmy|%P(Y|émy’ d)p(BmyIm). (1)

m Thus, posterior summaries such as u(d, m,y) can be
evaluated based on the above Laplace approximation
facilitating a relatively efficient approximation to u(d);

m However, non-smooth utility function leading to a difficult
optimisation problem;

QUT

m Try using statistical emulators?
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Emulation and optimisation

The use of emulators in locating Bayesian designs

m Muller and Parmigiani (1995) - Curve fitting methods to
smooth Monte Carlo draws (2D)

m Weaver et al. (2016) - Gaussian process with EQI (3D)

m Jones et al. (2016) - Bayes linear analysis (9D)

m Approximate coordinate exchange (Overstall and Woods,
2017) (~ 200D);
m Extension of the coordinate exchange algorithm;
m Emulator used to interpolate {I(d) in one dimension at a time;
m Can be inefficient if one-dimensional solution changes
depending on the values of other design elements.

QUT
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Emulation and optimisation

The ACE algorithm

Optimises each design element one-at-a-time

Instead of exchanging a discrete set of points for each design
element, fit an emulator and optimise

m With k explanatory variables, n design points,
dll d21 oo dkl
d]_2 d22 “ee dkz
d= .
d_‘]_n d2n . o dkn

Emulate u(d) as a function of dj, given d_j is fixed. Denote
as u(djld_j),fori=1,...,nandj=1,...,k

Optimise emulator (brute force)
Cycle through all nk design points R times
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Emulation and optimisation

Emulation

m Chosen emulator is the Gaussian Process (GP, Rasmussen
and Williams, 2006)
m Defined by a mean and covariance function:

f(z) ~ gP(m(2), k(z,7)),
where z are predictor variables, mean function m(z) is the
expected value at z and k(z,y) is the covariance function
which models the dependence between function values at zx
and z, fork,l1=1,2,...,T.
m Each element of the covariance matrix:

N ) Yot ifx=0
k(2 2i17) = { v1k(zk,z1,y2) if x>0,
where x is the Euclidean distance between zx and z, yq is QuT

nugget, y1 is partial sill and y» is an additional parameter.
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Emulation and optimisation

The ACE algorithm

m Some popular choices for k(zx, zj,y2) include:

k(zk,z1,y2) = exp(=0.5(x/v2)?) Gaussian
k(zk, z1,y2) = exp(—x/y2) Exponential
k(zx,z1,y2) = (1 + VBxyz + (5/3)(x/v2)?) exp(— VBxy;) Matérn.

m Efficient when f(z) is expensive as can interpolate f(Z)
(based on the fitted zero mean GP):
f(2) = k(2. Z,y)(k(Z.7) + 7o) "2,

where Z denotes training set, k(z, Z,y) evaluates the
covariances between z and Z, and I denotes the identity

matrix. QuT
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Emulation and optimisation

The ACE algorithm

u
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Figure: Emulated utility surface and training points
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Emulation and optimisation

The k-dimensional ACE algorithm

m Recall
dl d11 d21 . dk]_
d2 d12 d22 e dk2
d=| . |= .
dn d]_n d2n e dkn

m Propose optimising d; simultaneously
m Extend the GP to be k-dimensional

m Emulate u(d) as a function of d; given d_; is fixed. Denote as
u(dild_;)

u(dild_;) ~ GP(0,k(D,y)), D setof training points

m Optimise k-dimensional GP

QUT

m Cycle through all n design points R times
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Emulation and optimisation

The k-dimensional ACE algorithm

Training the emulator
m For each d;, need a training set D to fit GP (for {(d;|d_;))

m Consider d;

m Propose D through random draws from q(-);
m For each proposal, evaluate {i(d;|d_;). Denote as u
m Fit GP for {i(d,|d_;) (via maximum likelihood);

m After training, need to optimise the k-dimensional emulator

QUT
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Emulation and optimisation

The k-dimensional ACE algorithm

Optimising the emulator
m GP is a smooth function, use gradient-based methods;
m Efficient (as above):

b= k(d,D,y)(k(D,y) +vol)*u. 2)

Once training is complete, loop through the following
m Optimise the GP based on many random starts
m Evaluate the ‘actual’ expected utility {(d;|d_;) of maximum
m Re-fit the GP
The ‘best’ design form the above loop is either accepted or
rejected

m Then move to next row of the design

QUT
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Emulation and optimisation

The k-dimensional ACE algorithm

Training and optimisation
m Two components of the proposed algorithm; training and
optimisation
m Need to consider trade-off in computational resources
m How many utility evaluations for training? How many for
optimisation?
m Explored through examples (results omitted, 75% training,
25% optimising).
Choice of covariance function
m k-dimensional emulator, (in general) k > 1
m Choice of covariance function is potentially important
m Does this have implications for locating Bayesian designs?

QUT

m Explored through examples (some results shown)
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Examples

Examples

Details of examples

m Two examples to be considered; test problem and motivating
example

m Will compare the performance of ACE and k-dimensional ACE

m In both examples, both algorithms will be run in a similar way
(equal number of utility evaluations)

QUT
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Examples

Test problem

Logistic regression

m GLMs which are of general interest to the design community
(Woods et al., 2006, Dror and Steinberg, 2008)

m Often used to benchmark new computational algorithms in
Bayesian inference (Minka, 2001, Cabras et al., 2015)

m Emerging in Bayesian design (Overstall and Woods, 2017,
McGree, 2017)

m We consider independent and dependent data settings

QUT
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Examples

Test problem

Logistic regression
m Four factor logistic regression model
m Two scenarios; all data are independent and data are
collected in blocks of ng = 10, such that n = ngG, G is total
number of blocks
m Model defined as
P

_ =4
( L ) = 6o + Pog + Z(GJ + Big) diig

=1
where 6 are regression parameters, f are block specific
parameters, dj € [-1,1],g=1,...,G

m Assumed unknown sign of effect (# = 0) with variances of 2,
Big ~ N(0,0%), 0% ~ G(2,2)

m For blocked data setting, likelihood approximated (details QUT
omitted)
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Examples

Example 1

Figure: Utility surface and proposed optimal design points (only in 2D)
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Examples

Example 1
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Figure: ACE with exp (4), k-ACE with Matérn (o), exp (x) and quantile

improvement (+) for Shannon information gain on @ for standard (a) and
hierarchical (b) logistic regression
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Examples

Motivating example

Screening experiments
m Eight factor logistic regression model
m Unknown if any or all factors are important, 256 competing
models
m Model defined as
k=8

i
( ’ ) =6+ ) 6;0d;
1-—m =

where ¢; is a binary indicator for whether factor j is active or
not, and dj € [-1,1]
m p(m) correct for Bayesian multiplicity (Scott and Berger, 2010)

m Assume uniform priors for 6, lower and upper bounds
(-3,4,5,-6,-2.5,-2,-4,-5,-6) and QUT'
(3,10,11,0,3.5,4,2,1,0), respectively.
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Examples

Example 2
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Figure: ACE (A) vs k-ACE (o) for (a) Shannon information gain on 6 (b)
Negative squared loss and (c) 01-utility .
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Conclusion

Discussion

m Proposed an extension to the ACE algorithm

m k-dimensional ACE worked better or at least as well as ACE
in all examples considered

m Bayesian designs differed based on choice of covariance
function - propose using CV to choose

m Also tried quantile improvement for all examples.

QUT
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Conclusion

Future research

Potential to consider non-parametric emulators.
Should avoid some concerns about goodness-of-fit of the
emulator

Could think about more efficient or adaptive proposal
distribution for training the emulator

This is a design problem within itself
Potential benefits in considering space filling approaches

QUT
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