top of page

PUBLICATIONS

Working papers, books, book chapters, journal articles, conference proceedings and patents.  Click the titles to be directed to the publication.

See Google scholar for citation metrics.

WORKING PAPERS

BOOKS

JOURNAL ARTICLES

  1. Overstall, A. M. and McGree, J. M. (2024) General Bayesian L2 calibration of mathematical modelsTechnometrics.  Tentatively accepted for publication.

  2. De Silva, D., Fisher, R., Radford, B., Thompson, H. and McGree, J. M. (2024) Model-robust Bayesian design through Generalised Additive Models for monitoring submerged shoalsAnnals of Applied Statistics.  Accepted for publication.

  3. Buchhorn, K., Mengersen, K., Santos-Fernandez, E., Peterson, E. and McGree, J. M. (2024) Bayesian design with sampling windows for complex spatial processes. Journal of the Royal Statistical Society, Series C, 73, 378-397.

  4. Cure, K., Barneche, D., Depczynski, M., Fisher, R., Warne, D., McGree, J. M., Underwood, J., Weisenberger, F., Evans-Illidge, E., Ford, B., Oades, D., Howard, A., McCarthy, P., Pyke, D., Edgar, Z., Maher, R., Sampi, T., Dougal, K. and Bardi Jawi Traditional Owners (2024).  Incorporating uncertainty in Indigenous sea Country monitoring with Bayesian statistics: Towards more informed decision-makingAmbio, 53, 746-763.

  5. Thilan, P., Peterson, E., Menendez, P., Caley, J., Drovandi, C., Mellin, C. and McGree, J. M. (2024) Bayesian design methods for improving the effectiveness of monitoring coral reefsEnvironmental and Ecological Statistics.  Accepted for publication.

  6. Crichton, A., Harris, K., McGree, J. M., Nikles, J., Anderson, P. J. and Williams, K. (2024) Fetal alcohol spectrum disorder and attention deficit hyperactivity disorder stimulant trial in children: an N-of-1 pilot trial to compare stimulant to placebo (FASST): Protocol.  BMJ Open, 14, e071266.

  7. Santos-Fernandez, E., Ver Hoef, J. M., Peterson, E. E., McGree, J. M., Villa, C., Leigh, C., Turner, R., Roberts, C. and Mengersen, K. (2024) Unsupervised anomaly detection in spatio-temporal stream network sensor data.  Water Resources Research.  Accepted for publication.

  8. Mahendran, A., Thompson, H. and McGree, J. M. (2023) A model robust sub-sampling approach for generalised linear models in big data settings. Statistical Papers, 64, 1137-1157.

  9. Senarathne, S. G. J., Mueller, W. and McGree, J. M. (2023) Bayesian design for minimising uncertainty in spatial processes. Biometrical Journal, 65, 2100386.

  10. Santos-Fernandez, E., Ver Hoef, J. M., Peterson, E. E., McGree, J. M., Isaak, D. J. and Mengersen, K. (2023) SSNbayes: An R package for Bayesian spatio-temporal modelling on stream networks. R Journal, 15, 26-58.

  11. Thilan, P., Menendez, P. and McGree, J. M. (2023) Assessing the ability of adaptive designs to capture long-term trends in hard coral coverEnvironmetrics, 34, e2802.

  12. Bon, J. J., Bretherton, A., Buchhorn, K., Cramb, S., Drovandi, C., Hassan, C., Jenner, A., Mayfield, H., McGree, J. M., Mengersen, K., Price, A., Salomone, R., Santos-Fernandez, E., Vercelloni, J. and Wang, X. (2023) Being Bayesian in the 2020s: opportunities and challenges in the practice of modern applied Bayesian statistics. Philosophical Transactions of the Royal Society A, 381, 20220156.

  13. McQuilten, Z. K., Venkatesh, B., Jha, V., Roberts, J., Morpeth, S. C., Totterdell, J. A., McPhee, G. M., Abraham, J., Bam, N., Bandara, M., Bangi, A. K., Barina, L. A., Basnet, B. K., Bhally, H., Bhusal, K., Bogati, U., Bowen, A. C., Burke, A. J., Christopher, D. J., Chunilal, S. D., Cochrane, B., Curnow, J. L., Das, S. K., Dhungana, A., Di Tanna, G. L., Dotel, R., DSouza, H., Dummer, J., Dutta, S., Foo, H., Gilbey, T. L., Giles, M., Goli, K., Gordon, A., Gyanwali, P., Haksar, D., Hudson, B. J., Jani, M., Jevaji, P. R., Jhawar, S., Jindal, A., John, M. J., John, M., John, F. B., John, O., Jones, M., Joshi, R. D., Kamath, P., Kang, G., Karki, A. R., Karmalkar, A. M., Kaur, B., Koganti, K. C., Koshy, J. M., Krishnamurthy, M. S., Lau, J. S., Lewin, S. R., Lim, L., Marschner, I. C., Marsh, J. A., Maze, M. J., McGree, J. M., McMahon, J. H., Medcalf, R. L., Merriman, E. G., Misal, A. P., Mora, J. M., Mudaliar, V. K., Nguyen, V., O'Sullivan, M. V., Pant, S., Pant, P., Paterson, D. L., Price, D. J., Rees, M. A., Robinson, J. O., Rogers, B. A., Samuel, S., Sasadeusz, J., Sharma, D., Sharma, P. K., Shrestha, R., Shrestha, S. K., Shrestha, P., Shukla, U., Shum, O., Sommerville, C., Spelman, T., Sullivan, R. P., Thatavarthi, U., Tran, H. A., Trask, N., Whitehead, C., Mahar, R. K., Hammond, N. E., McFadyen, J. D., Snelling, T. L., Davis, J. S., Denholm, J. T. and Tong, S. Y. (2023) Anticoagulation strategies in non-critically ill patients with COVID-19. NEJM Evidence, 2, EVIDoa2200293.

  14. Tones, M., Zeps, N., Wyborn, Y., Smith, A., Barrerro, R., Heussler, H., Cross, M., McGree, J. M. and Bellgard, M. (2023) Does the Registry Speak Your Language? A case study of the Global Angelman Syndrome Registry.  Orphanet Journal of Rare Diseases, 18, 330.

  15. Powers, J., McGree, J. M., Grieve, D., Aseervatham, R., Ryan, S. and Corry, P. (2023) Managing surgical waiting lists through dynamic priority scoring.  Health Care Management Science, 26, 533-557.

  16. Masoud, M., Hsieh, J., Helmstedt, K., McGree, J. M. and Corry, P. (2023) An integrated pasture biomass and beef cattle liveweight predictive model under weather forecast uncertainty: An application to Northern Australia. Food and Energy Security, 12, e453.

  17. Sisley, H., Dik, G., McGree, J. M. and Corry, P. (2023) Multi-product multi-region supply chain optimisation for seasonal crops. International Journal of Production Research, 61, 5704-5722.

  18. Rallapalli, S., Pariartha, I. P. G. S., Aggarwal, S., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2023) Compounding effects of urbanisation, climate change and sea-level rise on monetary projections of flood damage.  Journal of Hydrology, 620, 129535.

  19. McGree, J. M., Hockham, C., Kotwal, S., Wilcox, A., Bassi, A., Pollock, C., Burrell, L. M., Snelling, T., Jha, V., Jardine, M. and Jones, M. (2022) Controlled evaLuation of Angiotensin Receptor blockers for COVID-19 respIraTorY disease (CLARITY): Statistical analysis plan for a randomised controlled Bayesian adaptive sample size trialTrials, 23, 361.

  20. Overstall, A. M. and McGree, J. M. (2022) Bayesian decision-theoretic design of experiments under an alternative modelBayesian Analysis, 17, 1021-1041.

  21. Santos-Fernandez, E., Ver Hoef, J. M., Peterson, E. E., McGree, J. M., Isaak, D. J. and Mengersen, K. (2022) Bayesian spatio-temporal models for stream networks. Computational Statistics & Data Analysis, 170, 107446.

  22. Jardine, M., Kotwal, S., Bassi, A., Hockham, C., Jones, M., Wilcox, A., Pollock, C., Burrell, L. M., McGree, J. M., Rathore, V., Jenkins, C., Gupta, L., Ritchie, A., Bangi, A., D'Cruz, S., McLachlan, A., Finfer, S., Cummins, M., Snelling, T. and Jha, V. (2022) Angiotensin receptor blockers for the treatment of COVID-19: pragmatic, adaptive, multicentre, phase 3, randomised controlled trialBMJ, 379, e072175.

  23. Thilan, P., Fisher, R., Thompson, H., Menendez, P., Gilmour, J. and McGree, J. M. (2022) Adaptive monitoring of coral health at Scott Reef where data exhibit nonlinear and disturbed trends over time. Ecology and Evolution, 12, e9233.

  24. Leemans, S., McGree, J. M., Polyvyanyy, A. and ter Hofstede, A. H. M. (2022) Statistical tests and association measures for business processes. Transactions on Knowledge and Data Engineering.  Accepted for publication.
  25. McDonald, S., Tan, S. X., Banu, S., Driel, M., McGree, J. M., Mitchell, G. and Nikles, J. (2022)  Exploring symptom fluctuations and triggers in myalgic encephalomyelitis/chronic fatigue syndrome using novel patient-centred N-of-1 observational designs: Protocol for a feasibility and acceptability studyThe Patient - Patient-Centered Outcomes Research, 15, 197-206.

  26. Cook, D., Tarlinton, B., McGree, J. M., Blackler, T. and Hauxwell, C. (2022) Thermal sensing and honey bee colony strengthJournal of Economic Entomology, 115, 715-723.

  27. Cooper, M., McGree, J. M., Molloy, T. L. and Ford, J. (2021) Bayesian experimental design with application to dynamic vehicle modelsIEEE Transactions on Robotics, 37, 1844-1851.

  28. Meier, A., McGree, J. M., Klee, R., Preub, J., Reiche, D., de Laat, M. and Sillence, M. (2021) The application of a new laminitis scoring method to model the rate and pattern of improvement from equine endocrinopathic laminitis in a clinical settingBMC Veterinary Research, 17, 1-9.

  29. Perera, T., McGree, J. M., Egodawatta, P., Jinadasa, K. B. S. N. and Goonetilleke, A. (2021) A Bayesian approach to model the trends and variability in urban stormwater quality associated with catchment and hydrologic parameters.  Water Research, 197, 117076.

  30. Perera, T., McGree, J. M., Egodawatta, P., Jinadasa, K. B. S. N. and Goonetilleke, A. (2021) Catchment based estimation of pollutant event mean concentration (EMC) and implications for first flush assessment.  Journal of Environmental Management, 279, 111737.

  31. Perera, T., McGree, J. M., Egodawatta, P., Jinadasa, K. B. S. N. and Goonetilleke, A. (2021) New conceptualisation of first flush phenomena in urban catchments.  Journal of Environmental Management, 281, 111820.

  32. Ma, Y., Mummullage, S., Wijesiri, B., Egodawatta, P., McGree, J. M., Ayoko, A. and Goonetilleke, A. (2021) Source quantification and risk assessment as a foundation for risk management of metals in urban road deposited solids. Journal of Hazardous Materials, 408, 124912.

  33. Cook, D., Blackler, T., McGree, J. M. and Hauxwell, C. (2021) Thermal impacts of apicultural practice and products on the honey bee colony. Journal of Economic Entomology, 114, 538-546.  Won Reader's Choice Award 2022

  34. Hockham, C., Kotwal, S., Wilcox, A., Bassi, A., McGree, J. M., Pollock, C., Burrell, L., Bathla, N., Kunigari, M., Rathore, V., John, M., Lin, E., Jenkins, C., Ritchie, A., McLachlan, A., Snelling, T., Jones, M., Jha, V. and Jardine, M. (2021) Protocol for the Controlled evaLuation of Angiotensin Receptor Blockers for COVID-19 respIraTorY disease (CLARITY): a Randomised Controlled Trial. Trials, 22, 573.

  35. Nikles, J., Onghena, P., Wicksell, R. K., Simons, L. E., McGree, J. M. and McDonald, S. (2021) The establishment of an International Collaborative Network for N-of-1 Clinical Trials and Single-Case Designs. Contemporary Clinical Trials Communications, 23, 100826.

  36. Bashford, G., Tan, S., McGree, J. M., Murdoch, V. and Nikles, J. (2021) Comparing pregabalin and gabapentin in persistent neuropathic pain: A protocol for a pilot N-of-1 trial seriesContemporary Clinical Trials Communications, 24, 100852.

  37. O'Connor, P., Thompson, M., Esposito, C., Poli, N., McGree, J. M., Donnelly, T. and Donnelly, W. (2021) The impact of functional combined anteversion on hip range-of-motion: a new optimal zone to reduce risk of impingement in total hip arthroplasty. Bone and Joint Open, 2, 834-841.

  38. Senarathne, S. G. J., Overstall, A. M. and McGree, J. M. (2020) Bayesian adaptive N-of-1 trials for estimating population and individual treatment effectsStatistics in Medicine, 39, 4499-4518.

  39. Overstall, A. M. and McGree, J. M. (2020) Bayesian design of experiments for intractable likelihood models using coupled auxiliary models and multivariate emulation. Bayesian Analysis, 15, 103-131.

  40. Senarathne, S. G. J., Drovandi, C. C. and McGree, J. M. (2020) A Laplace-based algorithm for Bayesian adaptive design. Statistics and Computing, 30, 1183-1208.

  41. Cespedes, M. I., McGree, J. M., Drovandi, C. C., Mengersen, K., Fripp, J. and Doecke, J. (2020) Relative rate of change in cognitive score network dynamics via Bayesian hierarchical models reveal spatial patterns of neurodegenerationStatistics in Medicine, 39, 2695-2713.

  42. Gedara, J., Drovandi, C. C. and McGree, J. M. (2020) Bayesian sequential design for Copula models. TEST, 29, 454-478.

  43. Pearse, A. R., McGree, J. M., Som, N. A., Leigh, C., Maxwell, P., Ver Hoef, J. M. and Peterson, E. (2020) SSNdesign - an R package for pseudo-Bayesian optimal and adaptive sampling designs on stream networksPLOS ONE, 15(9):e0238422.

  44. Baxendale, M., McGree, J. M., Bellette, A. and Corry, P. (2020) Machine-based production scheduling for rotomoulded plastics manufacturing. International Journal of Production Research, 59, 1301-1318.

  45. Broadbent, A. D., Firn, J., McGree, J. M., Borer, E. T., Buckley, Y. M., Harpole, W. S., Komatsu, K. J., MacDougall, A. S., Orwin, K. H., Ostle, N., Seabloom, E. W., Bakker, J. D., Bierdermann, L., Caldeira, M. C., Eisenhauer, N., Hagenah, N., Hautier, Y., Moore, J. L., Nogueira, C., Peri, P. L., Risch, A., Roscher, C., Schutz, M. and Stevens, C. (2020) Dominant native and non-native graminoids differ in key leaf traits irrespective of nutrient availabilityGlobal Ecology and Biogeography, 29, 1126-1138.

  46. Naim, F., Shand, K., Hayashi, S., O'Brien, M., McGree, J. M., Johnson, A., Dugdale, B. and Waterhouse, P. (2020) Are the current gRNA ranking prediction algorithms useful for genome editing in plants? PLOS ONE, 15, e0227994.

  47. Firn, J., McGree, J. M., Harvey, E., Schütz, M., Flores, H., Buckley, Y. M., Lind, E. M., Borer, E. T., Seabloom, E. W., La Pierre, K. J., MacDougall, A. M., Prober, S. M., Stevens, C. J., Sullivan, L., Porter, E., LaDouceur, E., Allen, C., Moromizato, K. H., Eisenhauer, N., Wright, J., Arnillas, C. A., Harpole, W. S. and Risch, A.C. (2019) Leaf nutrient contents, but not specific leaf area, increase rapidly and predictably in response to eutrophication. Nature Ecology and Evolution, 3, 400-406.

  48. Fisher, R., Shiell, G., Sadler, R., Inostroza, K., Shedrawi, G., Holmes, T. and McGree, J. M. (2019) 'epower': an R package for power analysis of Before-After-Control-Impact (BACI) designs.  Methods in Ecology and Evolution, 10, 1843-1853.

  49. McDonald, S., McGree, J. M. and Bazzano, L. (2019) Finding benefit in n-of-1 trialsJournal of the American Medical Association, 179, 454-455.

  50. Nikles, J., O'Sullivan, J., Mitchell, G., Smith, S., McGree, J. M., Senior, H., Dissanayaka, N. and Ritchie, A. (2019) Protocol: Using N-of-1 tests to identify responders to melatonin for sleep disturbance in Parkinson's diseaseContemporary Clinical Trials Communications, 15, 100397.

  51. Nikles, J., Tate, R. L., Mitchell, G., Perdices, M., McGree, J. M., Freeman, C., Jacob, S., Taing, M. W. and Sterling, M. (2019) Personalised treatments for acute whiplash injuries: A pilot study of nested N-of-1 trials in a multiple baseline single-case experimental designContemporary Clinical Trials Communications, 16, 100480.

  52. Blackston, J., Chapple, A., McGree, J. M., McDonald, S. and Nikles, J. (2019) Comparison of aggregated N-of-1 trials with parallel and crossover randomized controlled trials using simulation studies. Healthcare, 7, 137.

  53. Bellgard, M., I., Snelling, T. and McGree, J. M. (2019) RD-RAP: Beyond rare disease patient registries, devising a comprehensive data and analytics framework. Orphanet Journal of Rare Diseases, 14, 176.

  54. Leigh, C., Alsibai, O., Hyndman, R., J., Kandanaarachchi, S., King, O. C., McGree, J. M., Neelamraju, C., Strauss, J., Talagala, P. D., Turner, R. S., Mengersen, K. and Peterson, E. (2019) A framework for automated anomaly detection in high frequency water-quality data from in situ sensorsScience of the Total Environment, 664, 885-898.

  55. Leigh, C., Kandanaarachchi, S., McGree, J. M., Hyndman, R., J., Alsibai, O., Mengersen, K. and Peterson, E. (2019) Predicting sediment and nutrient concentrations from high-frequency water quality data.  PLOS ONE, 14, e0215503.

  56. Leigh, C., Heron, G., Wilson, E., Gregory, T., Clifford, S., Holloway, J., McBain, M., Gonzalez, F., McGree, J. M., Brown, R., Mengersen, K. and Peterson, E. (2019) Using virtual reality and thermal imagery to improve statistical modelling of vulnerable and protected speciesPLOS ONE, 14, e0217809.

  57. Perera, T., McGree, J. M., Egodawatta, P., Jinadasa, K. B. S. N. and Goonetilleke, A. (2019) Taxonomy of influential factors for predicting pollutant first flush in urban stormwater runoffWater Research, 116, 115075.

  58. Ma, Y., Deilami, K., Egodawatta, P., Liu, A., McGree, J. M. and Goonetilleke, A. (2019) Creating the hierarchy of hazard control for urban stormwater management. Environmental Pollution, 225, 113217.

  59. Rasheed, A., Egodawatta, P., Goonetilleke, A. and McGree, J. M. (2019) A novel approach for delineation of homogeneous rainfall regions for water sensitive urban design - A case study in South-East Queensland. Water, 11, 570.

  60. de Laat, M . A., Reiche, D., Sillence, M. and McGree, J. M. (2019) Incidence and risk factors for recurrence of endocrinopathic laminitis in horses. Journal of Veterinary Internal Medicine, 33, 1473-1482.

  61. Meier, A. D., de Laat, M . A., Pollitt, C. C., Walsh, D., McGree, J. M., Reiche, D. B., von Salis-Soglio, M., Wells-Smith, L., Mengeler, U., Salas, D., Droegemueller, S. and Sillence, M. N. (2019) A modified Obel method for the severity scoring of (endocrinopathic) equine laminitis. PeerJ, 7, e7084.

  62. Ainscough, R. J., McGree, J. M., Callaghan, M. J. and Speight, R. E. (2019) Effective incorporation of Xylanase and Phytase in lick blocks. Animal Production Science, 59, 1762-1768.

  63. Overstall, A. M., McGree, J. M. and Drovandi, C. C. (2018) An approach for finding fully Bayesian optimal designs using normal-based approximations to loss functionsStatistics and Computing, 28, 343-358.

  64. Dehideniya, M., Drovandi, C. C. and McGree, J. M. (2018) Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology. Computational Statistics & Data Analysis, 124, 277-297.

  65. McGree, J. M. and Mengersen, K. (2018) Discussion of "Optimal treatment allocations in space and time for on-line control of an emerging infectious disease" published in Journal of the Royal Statistical Society, Series C, 67, 743 - 789.

  66. Wijesiri, B., McGree, J. M., Deilami, K. and Goonetilleke, A. (2018) Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: a Bayesian network approach. Environmental Pollution, 233, 655-661.

  67. Meier, A. D., de Laat, M. A., Reiche, D. B., Pollitt, C. C., Walsh, D. M., McGree, J. M. and Sillence, M. N. (2018) The oral glucose test predicts laminitis risk in ponies fed a diet high in non-structural carbohydrates. Domestic Animal Endocrinology, 68, 1-9.

  68. Cespedes, M. I., McGree, J. M., Drovandi, C. C., Mengersen, K., Doecke, J. and Fripp, J. (2018) An efficient algorithm for estimating brain covariance networks. PLOS ONE, 13, e0198583.

  69. Tan, M., Smith, S., Zarate, D., McGree, J. M. and Naidoo, R. (2018) Redo aortic valve replacement: Risk factors for postoperative morbidity and long-term survival. Heart, Lung and Circulation, 27, S537.

  70. Drovandi, C. C., Holmes, C., McGree, J. M., Mengersen, K., Richardson, S. and Ryan, E. (2017) Principles of experimental design for big data analysis. Statistical Science, 32, 385-404.

  71. McGree, J. M. (2017) Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design. Computational Statistics & Data Analysis, 113, 207-225.

  72. Woods, D. C., McGree, J. M., and Lewis, S. M. (2017) Information capacity designs for generalized linear models. Computational Statistics & Data Analysis, 113, 226-238.

  73. Ma, Y., McGree, J. M., Liu, A., Egodawatta, P. and Goonetilleke, A. (2017) Catchment scale assessment of risk posed by traffic generated heavy metals and polycyclic aromatic hydrocarbons. Ecotoxicology and Environmental Safety, 144, 593-600.

  74. Ma, Y., Liu, A., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2017) Quantitative assessment of human health risk posed by polycyclic aromatic hydrocarbons in urban road dust. Science of the Total Environment, 575, 895-904.

  75. Ma, Y., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2017) Assessment and management of human health risk from toxic metals and polycyclic aromatic hydrocarbons in urban stormwater arising from anthropogenic activities and traffic congestion. Science of the Total Environment, 579, 202-211.

  76. Deilami, K., Hayes, J., McGree, J. M. and Goonetilleke, A. (2017) Application of landscape epidemiology to assess potential public health risk due to poor sanitation. Journal of Environmental Management, 192, 124-133.

  77. Amarasinghe, P., Liu, A., Egodawatta, P., Barnes, P., McGree, J. M. and Goonetilleke, A. (2017) Modelling resilience of a water supply system under climate change and population growth impacts. Water Resources Management, 1-14.

  78. Cespedes, M. I., Fripp, J., McGree, J. M., Drovandi, C. C., Mengersen, K. and Doecke, J. D. (2017) Comparisons of neurodegeneration over time between healthy ageing and Alzheimer’s disease cohorts via Bayesian inference. BMJ open, 7, e012174.

  79. Alemayehu, C., Mitchell, G., Aseffa, A., Clavarino, A., McGree, J. M. and Nikles, J. (2017) A series of N-of-1 trials to assess the therapeutic interchangeability of two enalapril formulations in the treatment of hypertension in Addis Ababa, Ethiopia: study protocol for a randomized controlled trial. Trials, 18, 470.

  80. McGree, J. M., Drovandi, C. C., White, G. and Pettitt, A. N. (2016) A pseudo-marginal sequential Monte Carlo algorithm for random effects models in Bayesian sequential design. Statistics and Computing, 26, 1121-1136.

  81. Kang, S. Y., McGree, J. M., Drovandi, C.C., Caley, J. and Mengersen, K. (2016) Bayesian adaptive design: Improving the effectiveness of reef monitoring programs. Ecological Applications, 26, 2635-2646.

  82. Wijesiri, B., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2016) Assessing uncertainty in stormwater quality modelling. Water Research, 103, 10-20.

  83. Wijesiri, B., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2016) Understanding the uncertainty associated with pollutant build-up and wash-off: A critical review. Water Research, 101, 582-596.

  84. Wijesiri, B., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2016) Influence of process uncertainty in heavy metal build-up and wash-off on stormwater quality. Water Research, 91, 264-276.

  85. Wijesiri, B., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2016) Assessing uncertainty in pollutant build-up and wash-off processes. Environmental Pollution, 212, 48-56.

  86. Liu, S., McGree, J. M., Hayes, J. and Goonetilleke, A. (2016) Spatial response surface modelling for the evaluation of potential human health risk in the presence of data paucity. Science of the Total Environment, 566-567, 1368-1378.

  87. Ma, Y., Egodawatta, P., McGree, J. M., Liu, A. and Goonetilleke, A. (2016) Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 557, 764-772.

  88. Amarasinghe, P., Liu, A., Egodawatta, P., Barnes, P., McGree, J. M. and Goonetilleke, A. (2016) Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change. Journal of Hydrology, 540, 1043-1052.

  89. De Rosa, D., Biala, J., Scheer, C., Basso, B., McGree, J. M. and Grace, P. R. (2016) Effect of organic and mineral N2O emissions from an intensive vegetable rotation. Biology and Fertility of Soils, 52, 895-908.

  90. Hsieh, J.C.F., Cramb, S., McGree, J. M., Baade, P., Dunn, N. and Mengersen, K. (2016) Does geographic location impact the survival differential between screen- and interval-detected breast cancers? Stochastic Environmental Research and Risk Assessment, 30, 155-165.

  91. Hsieh, J.C.F., Cramb, S., McGree, J. M., Baade, P., Dunn, N. and Mengersen, K. (2016) Spatially varying coefficient inequalities: Evaluating how the impact of patient characteristics on breast cancer survival varies by location. PLOS ONE, http://dx.doi.org/10.1371/journal.pone.1-13.

  92. Zamora, C. A., Oshmyansky, A., Bembea, M., Berkowitz, I., Alqahtani, E., Liu, S., McGree, J. M., Stern, S., Huisman, T. and Tekes, A. (2016) Resistive index variability in anterior cerebral artery measurements during daily transcranial duplex sonography: A predictor of cerebrovascular complications in infants undergoing extracorporeal membrane oxygenation? Journal of Ultrasound in Medicine, 35, 2459-2465.

  93. de Laat, M . A., McGree, J. M. and Sillence, M. N. (2016) Equine hyperinsulinemia: the role of the enteroinsular axis in metabolic dysfunction. American Journal of Physiology, 310, E61-E72.

  94. Ryan, E., Drovandi, C. C., McGree, J. M. and Pettitt, A. N. (2016) A review of modern computational algorithms for Bayesian optimal design. International Statistical Review, 84, 128-154.

  95. Liu, S., Anh, V., McGree, J. M., Kozan, E. and Wolff, R. C. (2015) A new approach to the interpolation of complex spatial data. Stochastic Environmental Research and Risk Assessment, 29, 1679-1690.

  96. Kang, S. Y., McGree, J. M., Baade, P., and Mengersen, K. (2015) A case study for modelling cancer incidence using Bayesian spatio-temporal models. Australian and New Zealand Journal of Statistics, 57, 325-345.

  97. Wijesiri, B., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2015) Incorporating process variability in relation to stormwater quality modelling. Science of the Total Environment, 533, 454-461.

  98. Wijesiri, B., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2015) Influence of pollutant build-up on variability in pollutant wash-off from urban road surfaces. Science of the Total Environment, 527, 344-350.

  99. Wijesiri, B., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2015) Process variability of pollutant build-up on urban road surfaces. Science of the Total Environment, 518, 434-440.

  100. Hsieh, J.C.F., Cramb, S., McGree, J. M., Baade, P. and Mengersen, K. (2015) Geographic variation in the choice of adjuvant treatments for women diagnosed with screen-detected breast cancer in Queensland. BMC Public Health, 15, 1204.

  101. Sarini, S., McGree, J. M., White, N., Mengersen, K. and Kerr, G. (2015) Comparison of decision tree, support vector machines, and Bayesian network approaches for classification of falls in Parkinsons disease. International Journal of Applied Mathematics and Statistics, 53, 145-151.

  102. Tsai, Y., Phan, K., Stroebel, A., Williams, L. Nicotra, L., Drake, L., Ryan, E., McGree, J. M. Tesar, P. and Shekar, K. (2015) Association between post-sternotomy tracheostomy and deep sternal wound infection. Heart, Lung and Circulation, 24, e50-e51.

  103. Drovandi, C. C., McGree, J. M. and Pettitt, A. N. (2014) A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design. Journal of Computational and Graphical Statistics, 23, 3-24.

  104. Kang, S. Y., McGree, J. M., Baade, P. and Mengersen, K. (2014) An investigation of the impact of various geographical scales for the specification of spatial dependence. Journal of Applied Statistics, 41, 2515-2538.

  105. Kang, S. Y., McGree, J. M. and Mengersen, K. (2014) Bayesian hierarchical models for analyzing spatial point based data at a grid level: a comparison of approaches. Environmental and Ecological Statistics, 22, 297-327.

  106. Kang, S. Y., McGree, J. M., and Mengersen, K. (2014) Choice of spatial scales and spatial smoothness priors for various spatial patterns. Spatial and Spatio-temporal Epidemiology, 10, 11-26.

  107. Falk, M. G., McGree, J. M. and Pettitt, A. N. (2014) Sampling designs on stream networks using the pseudo-Bayesian approach. Environmental and Ecological Statistics, 21, 751-773.

  108. Watson, K., Farre, M. J., McGree, J. M., Birt, J. and Knight, N. (2014) Predictive models for water sources with high brominated-disinfection by-product susceptibility: implications for water treatment. Environmental Science and Pollution Research, 22, 1963-1978.

  109. Migliorati, M., Scheer, C., Grace, P. R., Bell, M. and McGree, J. M. (2014) Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat-maize cropping system. Agriculture, Ecosystems and Environment, 186, 33-43.

  110. Hsieh, J.C.F., Cramb, S., McGree, J. M., Baade, P., Dunn, N. and Mengersen, K. (2014) Bayesian spatial analysis for the evaluation of breast cancer detection methods. Australian and New Zealand Journal of Statistics, 55, 351-367.

  111. Tol, M. M., Shekar, K., Barnett, A. G., McGree, J. M., McWhinney, B. C., Ziegenfuss, M., Ungerer, J. P. and Fraser, J. F. (2014) A preliminary investigation into adrenal responsiveness and outcomes in patients with cardiogenic shock after acute myocardial infarction. Journal of Critical Care, 29, 470.e1470.e6.

  112. Egodawatta, P., McGree, J. M., Kankanamalage, B.S.W.M. and Goonetilleke, A. (2014) Compatibility of stormwater treatment performance data between different geographical areas. AWA Water Journal, 41, 53-57.

  113. Pearse, B. L., Wall, D., Smith, I., Faulke, D., Rapchuck, I., Fraser, J. F., McGree, J.M., Drake, L., Tesar, P. and Fung, Y. L. (2014) Implementing a point of care testing (POCT) service improves management of haemostatic dysfunction in cardiac surgery patients. Australian Critical Care, 27, 49.

  114. Villanueva, C., Ranawaka, Y., Pearse, B., Gabriel, S., McGree, J. M., Wall, D. and Tesar, P. (2014) Impact of preoperative serum creatinine on isolated elective aortic valve replacements. Heart, Lung and Circulation, 23, e61.

  115. Thamrin, S. A., McGree, J. M. and Mengersen, K. (2013) Modelling survival data to account for model uncertainty: A single model or model averaging?  SpringerPlus, 2, 1-13.

  116. Kang, S. Y., McGree, J. M. and Mengersen, K. (2013) Impact of spatial scales on the outcome of Bayesian spatial models. PLOS ONE, 8(10): e75957. doi:10.1371/journal.pone.0075957.

  117. Drovandi, C. C., McGree, J. M. and Pettitt, A. N. (2013) Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data. Computational Statistics & Data Analysis, 57, 320-335.

  118. Choudhary, J., Gabriel, S., McGree, J. M., Mustaev, M., Ranawaka, Y. and Tesar, P. (2013) Risk factors for sternal breakdown in cardiac surgery patients. Heart, Lung and Circulation, 22, 478-479.

  119. McGree, J. M., Noble, G., Schneiders, F., Dunstain, A., McKinney, A., Boston, R. and Sillence, M. (2013) A Bayesian approach to estimating detection times in horses: Exploring the pharmacokinetics of a urinary acepromazine metabolite. Journal of Veterinary Pharmacology and Therapeutics, 36, 31-42.

  120. McGree, J. M. and Eccleston, J. A. (2012) Robust designs for Poisson regression models. Technometrics, 54, 64-72.

  121. McGree, J. M., Drovandi, C. C., Thompson, H. M., Eccleston, J. A., Duffull, S. B., Mengersen, K., Pettitt, A. N. and T. Goggin (2012) Adaptive Bayesian compound designs for dose finding studies. Journal of Statistical Planning and Inference, 142, 1480-1492.

  122. McGree, J. M., Drovandi, C. C. and Pettitt, A. N. (2012) A sequential Monte Carlo approach to design for population pharmacokinetics studies. Journal of Pharmacokinetics and Pharmacodynamics, 39, 519-526.

  123. Foo, L. K., McGree, J. M., Eccleston, J. A. and Duffull S. B. (2012) Comparison of robust criteria for D-optimal design. Journal of Biopharmaceutical Statistics, 22, 1193-1205.

  124. Foo, L. K., McGree, J. M. and Duffull, S. B. (2012) A general method to determine sampling windows for nonlinear mixed effects models with an application to population pharmacokinetic studies. Pharmaceutical Statistics, 11, 325-333.

  125. Denman, N. G., McGree, J. M., Eccleston, J. A. and Duffull, S. B. (2011) Design of experiments for bivariate binary responses modelled by Copula functions. Computational Statistics & Data Analysis, 55, 1509-1520.

  126. Sillence, M, Noble, G., Schneiders, F., Bryden, W., Cawdell-Smith, J., De Laat, M., Jarrett, M., Young, B., McKinney, A., Cawley, A., Booth, J., Vine, J., Glowacki, L., McGree, J. M., Boston, R., Nelis, S., Kirkpatrick, C., Shaw, N. and Smyth, B. (2011) The pharmacokinetics of 12 equine medications. Rural Industries Research and Development Corporation (RIRDC). Barton, ACT. Technical report.

  127. McGree, J. M. and Eccleston, J. A. (2010) Investigating design for survival models. Metrika: International Journal for Theoretical and Applied Statistics, 72, 295-311.

  128. McGree, J. M., Duffull, S. B. and Eccleston, J. A. (2009) Sequential vs. simultaneous optimal design for nested multiple response models with FO and FOCE considerations. Journal of Pharmacokinetics and Pharmacodynamics, 36, 101-123.

  129. McGree, J. M., Duffull, S. B. and Eccleston, J. A. (2008) Compound optimal design criteria for nonlinear models. Journal of Biopharmaceutical Statistics, 18, 646-661.

  130. McGree, J. M. and Eccleston, J. A. (2008) Probability-based optimal design. Australian and New Zealand Journal of Statistics, 50, 13-28.

  131. McGree, J. M., Duffull, S. B., Eccleston, J. A. and Ward, L. C. (2007) Optimum designs for studying bioimpedance. Physiological Measurement, 28, 1465-1483.

BOOK CHAPTERS

  1. Cespedes, M., McGree, J. M., Drovandi, C., Mengersen, K., Reid, L., Doecke, J. and Fripp, J. (2020) A Bayesian hierarchical approach to jointly model cortical thickness and covariance networks. In Case Studies in Applied Bayesian Data Science (eds. Mengersen, K., Pudlo, P. and Robert, C.) 155-213. Springer, Cham.

  2. Mengersen, K., McGree, J. M. and Schmid, C. (2015). Statistical analysis of n-of-1 trials. In The essential guide to n-of-1 trials in health (eds. Nikles, J. and Mitchell, G.) 135-153. Springer, Netherlands.

  3. Mengersen, K., McGree, J. M. and Schmid, C. (2015). Systematic review and meta-analysis using n-of-1 trials. In The essential guide to n-of-1 trials in health (eds. Nikles, J. and Mitchell, G.) 211-231. Springer, Netherlands.

  4. McGree, J. M., Drovandi, C. C. and Pettitt, A. N. (2012). Implementing adaptive dose finding studies using sequential Monte Carlo. In Case Studies in Bayesian Statistical Modelling and Analysis (eds. Alston, C. L., Mengersen, K. and Pettitt, A. N.) 361-373. Wiley, United Kingdom.

  5. Thamrin, S. A., McGree, J. M. and Mengersen, K. (2012). Bayesian Weibull survival model for gene expression data. In Case Studies in Bayesian Statistical Modelling and Analysis (eds. Alston, C. L., Mengersen, K. and Pettitt, A. N.) 171-183. Wiley, United Kingdom.

CONFERENCE PROCEEDINGS

  1. Goel, K., Sadeghianasl, S., Andrews, R., ter Hofstede, A., Wynn, M., Geeganage, D. K., Leemans, S., McGree, J. M., Eden, R., Staib, A., Eley, R., and Donovan, R. (2023) Digital health data imperfection patterns and their manifestations in an Australian digital hospitalProceedings of the Hawaii International Conference on System Sciences, 3235-3244.

  2. Gill, A., Warne, D., Overstall, A., McGrory, C. and McGree, J. M. (2022) Robust simulation design for generalised linear models in conditions of heteroscedasticity or correlationProceedings of the Winter Simulation Conference.  Accepted for publication.

  3. Chowdhury, A., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2016) Development of an automatic calibration framework for hydrologic modelling using approximate Bayesian computation. In the proceedings of the World Academy of Science, Engineering and Technology: International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 10, 100-107.

  4. Hainy, M., Drovandi, C. C. and McGree, J. M. (2015) Likelihood-free extensions for Bayesian sequentially designed experiments. mODa 11 - Advances in Model-Oriented Design and Data Analysis, 153-161.

  5. Senadeera, M. and McGree, J. M. (2015) Earth Hour Energy Impact. IEEE PES Asia-Pacific Power and Energy Engineering Conference.

  6. Amarasinghe, P., Barnes, P., Egodawatta, P., McGree, J. M. and Goonetilleke, A. (2015) An approach for identifying the limit states of resilience of a water supply system. In Barnes, Paul H. & Goonetilleke, Ashantha (Eds.) Proceedings of the 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction (8-10 July 2013), Queensland University of Technology, Brisbane, QLD, pp. 255-264.

  7. Sarini, S., McGree, J. M. and Mengersen, K. (2014) Bayesian variable selection and modelling for metastatic breast cancer data. Proceedings of the 11th Biennial Engineering Mathematics and Applications Conference, EMAC-2013, ANZIAM Journal, C168-C181.

  8. Amarasinghe, P., Barnes, P., Egodawatta, P., McGree, J.M. and Goonetilleke, A. (2013) An approach for identifying the limit states of resilience of a water supply system. The 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction: Risk-informed Disaster Management: Planning for Response, Recovery & Resilience.

  9. Drovandi, C. C., McGree, J. M. and Pettitt, A. N. (2013) A sequential Monte Carlo framework for adaptive Bayesian model discrimination designs using Mutual Information. The Contribution of Young Researchers to Bayesian Statistics, 19-22.

  10. Kang, S. Y., McGree, J. M. and Mengersen, K. (2013) The impact of spatial scales on discretised spatial point patterns. 20th International Congress on Modelling and Simulation, 2005 - 2011.

 

PATENTS

  1. McGree, J. M., Duffull, S. B., Ward, L. C. and Eccleston, J. A. (2014) Impedance measurements. US Patent, US8761870B2.

bottom of page